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Pure cobalt titanate nanopowders were successfully prepared in wet-chemistry
synthesis method, using cobalt acetate and tetra-n-butyl titanate as Co and
Ti sources and stearic acid as complexing reagent. The gel was calcined at
different temperatures in air ranging from 500�C to 650�C. Results of thermal
analysis are given; including both differential thermal gravimetry (DTG) and
thermogravimetric. X-ray diffraction was used to characterise the crystallisation
process, the particle size and morphology of the calcined powders. The results
indicated that cobalt nanopowders with a particle size of about 35 nm could be
obtained after calcinations of the dried gel at 600�C for 2 h. In the temperature
range between 80�C and 500�C, the empirical equation (CP

(JK�1mol�1)¼�136.311þ 0.141T� 3.551� 107/T2) for the CP of CoTiO3 was
determined from differential scanning calorimetry. The synthesised CoTiO3

indicate a superparamagnetic behaviour, as evidenced by using vibrating sample
magnetometer at room temperature.

Keywords: nanostructures; sol–gel synthesis; X-ray diffraction; magnetic
measurements; heat capacity

1. Introduction

Titanium-based oxides containing metals, such as MTiO3 (M: Ni, Pb, Fe, Co, Cu and Zn)
are universally known as inorganic functional materials with wide applications. For
example, they are applicable for industries, such as electrodes of solid oxide fuel cells,
metal–air barriers, gas sensors, high performance catalysts and ferroelectric random access
memories [1–12].

During the past decades the interest of the researchers in CoTiO3 has increased due to
a series of its physiochemical properties permitting its application as pigment [13],
magnetic recording media, and gas sensor for alcohol indication, humidity sensor [14] and
catalyst [15].

The oxide-based magnetic nanoparticles have been investigated by many researchers
because of the interesting particular magnetic properties, such as superparamagnetic
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relaxation phenomena, surface effect by spin-canted structure, magneto-electrical trans-
port and so on [16,17]. They also have immense potential for applications in the areas of
high-density data storage, ferrofluids, magnetic resonance imaging, colour processing and
magnetic refrigeration [18]. The superparamagnetic behaviour has often appeared in the
magnetic nanoparticles with few nanometres [19]. In some cases the critical size was
estimated to be about 30 nm in diameter for a spherical sample of the common
ferromagnetic materials [20].

The wet-chemistry synthesis technique used in this study, including sol–gel, sol-
precipitation, combustion synthesis, chemical coprecipitation and hydrothermal synthesis,
offers many distinctive advantages over solid-state method in the production of
powders, such as a controlled morphology, a narrow size distribution and high purity [21].

The sol–gel process appears attractive because if offers in principle several obvious
advantages:

(1) lower processing temperature,
(2) high homogeneity and purity of resulting materials,
(3) Possibility of various forming process [22].

In this study, we chose one typical wet-chemistry synthesis method, stearic acid gel, to
prepare pure CoTiO3 nanopowders. In this route, the carboxylic acid group and long
carbon chain in stearic acid endow it with strong ability to disperse metal precursors.
Moreover, this synthetic process is easily controlled and convenient in comparison with
other methods. Magnetic properties and heat capacity of CoTiO3 were studied.

2. Experimental

CoTiO3 powders were prepared along a synthetic procedure as summarised in Figure 1.
Cobalt acetate, tetrabutyl titanate and stearic acid used in experiments were all of
analytical grade reagents. First, a 0.4mol of stearic acid was melted in a beaker at 73�C,
and then a 0.1mol of cobalt acetate was added to the melted stearic acid and dissolved to
form a dark blue transparent solution. Next, stoichiometric tetrabutyl titanate (0.1mol)
was added to the solution, stirring to form a homogeneous light red-brown sol, naturally
cooling down to room temperature and drying in an oven for 12 h to obtain dried gel.
Finally, the gel was calcined at four stages. In the first stage, dried gel was heated at a rate
of 3�Cmin�1 up to 400�C. In the second stage, heating was continued at 400�C for 40min
constantly. Then the temperature was increased up to 500�C, 550�C, 600�C and 650�C, for
each sample, respectively. In the last stage, the temperature was held constant for 2 h in air.
The process and structural characterisation of CoTiO3 phases have been investigated by
thermogravimetric/differential thermal analysis (TG/DTA) and X-ray diffraction (XRD).
To obtain nanocrystallites of CoTiO3, TG/DTA experiments were performed by TG/DTA
(METTLER TA4000) in air for dried gel sample to investigate the calcinations
temperature and possible phase transformation from 25�C to 900�C with a heating rate
of 5�Cmin�1. The XRD patterns of the powders were recorded on a Model PTS 3003 of
SEIFERT diffractometer using Cu-K� radiation (�¼ 1.5418 Å) in the range from 10� to
80� (2�) to examine the crystallisation and structural development of CoTiO3 powders.

The specific heat capacity was measured by scanning method and using a differential
scanning calorimeter, and differential scanning calorimetry (DSC; METTLER TA4000) in
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a pure nitrogen atmosphere. The sample (calcined at 600�C) was heated from 80�C to
500�C with a heating rate of 5�Cmin�1. Magnetisation measurements for CoTiO3 calcined
at 500�C and 600�C are carried out using vibrating sample magnetometer (VSM; BHV-55,
Riken, Japan) at room temperature.

3. Results and discussion

3.1. Thermal analysis

In order to investigate the synthesis process for CoTiO3, TG/DTG analysis was performed
for the dried gel sample and the results are shown in Figure 2. The DTG curve, at the first

Cobalt acetate

Melted stearic acid

Tetrabutyl titanate

DTG/TG

Sol

Gel

Drying

Calcination

Cobalt titanate powders

XRD VSM DSC

Figure 1. Flowchart for the preparation of CoTiO3 nanopowders.
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step, reveals a weight loss between 29.3�C and 165.3�C (7.41%), due to the evaporation of
acetic acid, water and the melting of gel.

In the second step, a drastic weight loss (68.26%) at the temperatures between 165.3�C
and 399.0�C can be assigned to the combustion of the organic derivatives in the gel and
formation of cobalt carbonate and cobalt complex (the boiling point of stearic acid is
383�C).The next moderate peak corresponding to the 15.87% weight loss starting from
399�C to 471�C was assigned to the formation of CoTiO3 phase. No apparent peak and
significant weight loss was observed at the temperature range of over 471�C, which
indicated the minimum crystalline temperature to get CoTiO3 powders by stearic acid gel
method was about 471�C.

3.2. XRD patterns

Figure 3 shows the XRD patterns of the CoTiO3 powders after heat-treatment from 500�C
to 650�C in air for 2 h. At 500�C, the crystallisation of rhombohedral cobalt titanate phase
(* marked peaks) began along with the traces of Co3O4 phase (C marked peaks)
(Figure 3a). Further, by increasing the calcination temperature to 600�C, the Co3O4 phase
was decreased with an increase in the intensity of CoTiO3 phase (Figure 3b). The
nanopowders were obtained after calcination at 600�C (Figure 3c).However, at this
temperature, the nanopowders displayed sharp and intense peaks indicating fine
crystalline rhombohedral CoTiO3 phase. All the peaks corresponding to the rhombohedral
phase matched well with the database in JCPDS (file number: 77-1373).

3.3. Morphology of samples

The particle size of powders can be calculated by Scherrer’s formula (t¼ k�/� cos �) [23]
where t is the average size of the particles, assuming particles are spherical, k¼ 0.9, � is the
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Figure 2. TG/DTG curves of uncalcined CoTiO3 dried gel.
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wavelength of radiation, � is the full width at half maximum of the diffracted peak and � is
the angle of diffraction. The particle size was calculated by Scherrer’s formula for different
calcination temperatures.The crystallite size of the powders calcined at 500�C, 550�C,
600�C and 650�C were about 28, 35, 35 and 47 nm, respectively.

3.4. Heat capacity

Piezoelectric and pyroelectric phenomena coexist in ferroelectric materials [24] whereas
pyroelectric and piezoelectric properties are related to heat capacity [25]. The temperature
dependence of the heat capacity of CoTiO3 determined by the scanning method is shown
in Figure 4. In the temperature range between 80�C and 500�C, the empirical equation for
the CP of CoTiO3 is determined from the experimental values as follows:

CPðJK
�1mol�1Þ ¼ �136:311þ 0:141T� 3:551� 107=T 2: ð1Þ

3.5. Magnetic properties

There are few reports regarding magnetic properties of CoTiO3. An antiferromagnetic
transition was detected at the Néel temperature, TN¼ 38K, as reported for single crystals
[26]. In the hexagonal crystallographic structure, the magnetic interactions of neighbour-
ing Co2þ spins are ferromagnetic within the a–b planes and antiferromagnetic between
adjacent a–b planes [27,28]. The sample exhibits a fully reversible transition, representative
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Figure 3. XRD patterns of CoTiO3 powders calcined at (a) 500�C; (b) 550�C; (c) 600�C and
(d) 650�C.
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of a genuine antiferromagnet. This fact reflects the good sample quality, since magnetic

irreversibilities are often present in magnetic ceramic samples [29].
The VSM magnetic measurements for the cobalt titanate (Figure 5) show the magnetic

properties of nanoparticles calcined at 500�C and 600�C. A comparison of VSM results

of nanoparticles calcined at 500�C (Figure 5a) and 600�C (Figure 5b) shows
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Figure 4. Heat capacities of CoTiO3 by DSC.
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Figure 5. VSM curves of CoTiO3 powders calcined at (a) 500�C and (b) 600�C.
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superparamagnetic behaviour in second sample which is more pure.The reduced Mr (room
temperature remnant magnetisation) and Hc (magnetic coercivity) values is close to one of
the characteristics of superparamagnetism response. The synthesised CoTiO3 indicates a
superparamagnetic behaviour, as evidenced by zero coercivity and remanance on the
magnetisation loop. In a superparamagnetic system, particles do not show hysteresis in the
M–H curves; hence Hc and Mr are near zero [17]. A saturation magnetisation of
�40 emu g�1 was determined for the CoTiO3 which is relatively higher than that of the
bulk value of CoTiO3 (�3 emu g�1 in 60 kOe applied field [30]).

4. Conclusion

This study has demonstrated the feasibility of the synthesis of pure CoTiO3 powders using
a wet-chemistry synthesis method using stearic acid gel. Well-crystallised CoTiO3

nanopowders could be synthesised at 600�C for 2 h. In addition, the empirical equation
for the Cp of CoTiO3 has been determined from DSC. Moreover, the synthesised CoTiO3

has indicated a superparamagnetic behaviour, as evidenced by using VSM at room
temperature.
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